Молекулы и информация – 12.08.03(хр.00:52:35)

Участник:
Лев Александрович Грибов – член-корреспондент РАН

Александр Гордон: ...как это принято сейчас в бинарной системе.

Лев Грибов: Есть единичный случай, когда была сделана троичная система.

А.Г. И что это дало, к чему это привело?

Л.Г. Вы знаете, это привело, в общем, к некому ускорению процесса, но насколько я знаю, одновременно это привело к существенному усложнению кон-струкции. Поэтому хотя в принципе это возможно и, в частности, есть работа Са-харова, в которой он показывал, что такая троичная система имеет определенные преимущества, но все-таки эта конструкция оказалась, по-видимому, не очень удачной. Осталась навсегда двоичная система. А вот что будет дальше, мы, может быть, сегодня и поговорим немножко на эту тему.

А.Г. Всякий раз, когда речь заходит об искусственном интеллекте, высказываются две противоположные точки зрения. Первая, что искусственный интеллект в том виде, в каком мы привыкли понимать интеллект человеческий, не будет существовать никогда, поскольку это принципиально невозможно, мы не знаем, как устроен мозг и не знаем, чем руководствуется человек, когда при явном недостатке или недостаточном качестве информации принимает решения, которые мы называем осмысленными. И вторая точка зрения, что этот барьер будет преодолен, как только мы выйдем на новое качество самих компьютеров. И тут называются и квантовые компьютеры, и вот та технология, о которой мы сегодня будем, видимо, тоже говорить.

Л.Г. Вы знаете, я придерживаюсь такой точки зрения, это моя точка зре-ния, я ее не собираюсь никому навязывать, что, конечно, создать такой интеллект, которым сплошь и рядом оперирует человек, нельзя в принципе. И, прежде всего, по следующим причинам.
Я иногда говорю, что существуют явления научные и вненаучные. Под вненаучными явлениями я понимаю отнюдь не парапсихологию или экстрасенсо-рику, всякую такую ерунду. То, что мы называем наукой, и то, что свойственно логическому мышлению, это всегда некая система знаний, которая дает возмож-ность построить прогноз, но у этого прогноза есть определенные постулаты. Пре-жде всего, постулат повторяемости.
Если этой повторяемости нет, то ничего создать невозможно. И в этом смысле мы можем говорить о физике, химии, о каких-то общих положениях той же психологии – все, что хотите. Но я очень сомневаюсь, чтобы когда-то появи-лась какая-то наука, которая предскажет, что, предположим, в 2075-м году в Рос-сии появится новый Пушкин. Хотя это явление, это реальный факт. Вряд ли такая постановка задачи когда-нибудь будет научной, то есть предметом науки. Можно изучать его творчество, это вопрос другого рода. Но прогнозировать такое собы-тие вряд ли удастся. Вы прекрасно знаете, что человеческий мозг состоит из двух частей, из двух половин. Одна отвечает за логическое мышление, а вторая отвеча-ет за образное мышление. И вот это образное мышление, которое очень тесно свя-зано с интуицией, это вещь, которую передать компьютеру очень трудно. Я лично имею здесь свой опыт вот какого сорта.
Довольно давно мы начали работать над одной системой. В то время они назывались "системами искусственного интеллекта", но потом их стали называть "экспертными системами".

А.Г. Поскромнее чуть-чуть.

Л.Г. Поскромнее. Задача таких систем заключалась в следующем. Это сложная логическая система, разрешающая много всяких задач. Предъявляется определенная совокупность экспериментальных данных, например, совокупность разного рода спектров, химической информации и так далее, и нужно догадаться, с какой молекулой вы имеете дело, то есть опознать молекулу. Причем, изначаль-но сведений об этой молекуле нет в памяти компьютера, но нужно решить такую очень сложную задачу, иногда напоминающую "пойди туда не знаю куда, прине-си то, не знаю что".
Потом мы немножко на эту тему поговорим, разнообразие здесь гигант-ское. Если молекулы содержат, скажем, 3-4 десятка атомов, то исходное разнооб-разие может быть – миллионы. Поэтому база этих сужений информации, когда, в конце концов, нужно получить всего один ответ, очень большая. Понятно, что это очень сложная система, которая и считает, и решает логические задачи, и все про-чее. В начале мы были несколько наивными и думали, что можно создать некий автомат, который эти задачи решает и проблема только в том, что сегодня мы не-достаточно запрограммировали что-то или еще чего-то не знаем.
Это было не только у нас, этим занимались многие люди, создавались, скажем, системы для медицины и тому подобное, то есть это громадная научная область. И общий вывод был такой, что создать полный автомат нельзя просто в принципе, ничего не получится без участия человеческого мозга, который прини-мает решение именно тогда, когда оно нестандартно.
Есть такое понятие: принять на себя риск решения. То есть компьютеры в некоторых случаях останавливаются и предлагают вам решить, что дальше де-лать. И здесь, как правило, человек базируется главным образом на своем каком-то прежнем опыте, на своей интуиции, на знании, скажем, истории объекта, это то, мы будем сегодня об этом тоже говорить, что относится к так называемой "не-четкой информации". Вот, скажем, он угадал. Дальше система опять вам может что-то решать таким формальным образом. И это, в общем, повторяю, не является недостатком, связанным с тем, что сегодня мы чего-то не умеем делать. Это принципиальное ограничение.
То есть оказывается, что наиболее эффективным средством является такой кентавр – человек-компьютер. Когда человек не просто нажал кнопку и пошел спать, а через какое-то время был выдан тот результат, какой вы хотите. Он рабо-тает с компьютером, он испытывает различные варианты. Он заставляет его дей-ствовать разными путями. Так что это, повторяю, опыт не только мой собствен-ный, это опыт вообще создателей экспертных систем, отсюда и появился этот термин.
Понимаете, обязательно участвует какой-то специалист в этой области. Больше того, такие системы наполняются, есть два понятия в этой области. Есть "банк данных" и есть "банк знаний". Это разные вещи. Данные – они более формальные, а знания накапливает какой-то специалист, особенно это остро проявилось в медицинских вещах. Сколько там приборов не делают, но все равно вы получаете о человеке какую-то минимальную информацию и отсюда роль врача, талантливого врача оказывается очень важной, даже несмотря на всю мощь современной приборной техники. И исходя из таких соображений, собственный опыт показывает, что сделать полный автомат не удастся. И роль интуиции, по-видимому, будет только возрастать.
Я могу привести еще один пример. Любой ученый пользуется литературой. Сейчас столько журналов, даже по более-менее узкой специальности, и столько там публикаций, что читать все практически невозможно. Если кто-то возьмется за это, у него не хватит времени на собственную работу. И больше того, крупные ученые, которые стоят во главе какого-то направления, они, как правило, очень мало читают. И вот возникает вопрос. Сейчас существует Интернет, обилие идет информации. Вы можете запросить что-то по ключевым словам, и вам вывалиться гигантское количество статей. Подойти к этому формально невозможно. Что де-лает любой разумный ученый – он начинает ориентироваться. Во-первых, в каком журнале опубликован материал? Журналов тоже много и более-менее одинаково-го калибра. Дальше какая фамилия автора, известен он или не известен?

А.Г. То есть все равно иерархическая система получается.

Л.Г. Конечно. Дальше, он прочитал название статьи. Прочитал, может быть, маленькое резюме, несколько строк. И на основе всего этого он должен вы-брать, читать ему эту статью или нет. Опять обратите внимание на то, что этот подход, он, конечно, не четкий, он не может быть сведен к каким-то формальным операциям.

А.Г. Но так же человек делает любой выбор, в супермаркете, скажем, вы-бирает продукты...

Л.Г. Конечно, конечно, и больше того, я думаю, что в большинстве случа-ев человек принимает решение как раз базируясь на интуиции, на этических сооб-ражениях, на соображениях моральных, на чувственных. Все мы, наверное, когда-то женились. И я очень сомневаюсь, чтобы в этот период мы вычисляли качества собственной будущей жены.

А.Г. Пример, который вы привели, заставляет меня сразу заметить, что че-ловеку свойственно делать ошибки. А компьютер программируется таким обра-зом, что он не имеет права на ошибку.

Л.Г. Вы знаете, компьютер, вообще говоря, тоже может делать ошибку. Он может выдавать гораздо больше материала, чем нужно. В математике существуют два понятия – "четкая информация" и "нечеткая информация". Современный компьютер, хотя и работает иногда с нечетко поставленной задачей, но на самом деле все равно оказывается, что эта задача четкая, потому что эта нечеткость за-дается какой-то функцией, которую я же ему навязал.

А.Г. То есть она сформулирована так или иначе.

Л.Г. Поэтому иногда говорят, что эти экспертные системы приобретают человеческие черты своих собственных создателей, вот такая вещь получается. Больше того, в некоторых научных областях возникает еще одна проблема, свя-занная с так называемыми "обратными задачами". Существуют два типа задач в теории математики: прямые и обратные. Прямые задачи – это когда я записал ка-кое-то уравнение и ставится вопрос, как решить это дело. Это прямая задача. Об-ратная задача – это когда я имею эксперимент и хочу построить какую-то теоре-тическую модель, которая этот эксперимент описывает. Скажем, когда мы имеем дело с микромиром, есть такие приемы, когда по спектру можно установить прочность химической связи. То есть приписать ей какую-то пружинку, типа обычной упругости пружинки, и непосредственно получить какие-то результаты.
Как вы понимаете, в молекулы не залезешь. Значит, это делается по косвенному эксперименту, значит, я как бы должен проникнуть внутрь через какую-то физическую связь, через какую-то теорию. И оказывается, что такие задачи не решаются в принципе, если вы изначально не навяжете им какие-то условия, которые ограничивают решения этой задачи. А это делает человек. И поэтому получается так, что два человека, решая одну и ту же задачу, опираясь на один и тот же эксперимент, но не сговорившись об этом условии, получат разные результаты. Это сейчас типичный случай во многих областях, как раз связанных с исследованием молекул. Другое дело, что расхождение получается небольшое и, как правило, оно находится в каких-то пределах. Но эти результаты надо рассматривать так, что они дополняют друг друга, то есть они дают вам возможность сказать, что в этих пределах, в таком поле возможных изменений я должен находиться. И точнее я не получу. Просто по постановке не получится.
Так что современная наука наткнулась на целый ряд таких моментов, ко-торые сейчас заставляют пересмотреть очень многие исходные положения, ка-сающиеся получения научного знания. Та идея, что мы двигаемся к некоей абсо-лютной истине, сегодня, как мне кажется, уже просто не соответствует реальной действительности.
И как раз об этом и хотелось поговорить сегодня. Я специалист в области молекулярного мира и занимаюсь многими аспектами как раз исследования физи-ческими средствами многоатомных молекул и в своей работе перебрал довольно много всяких вопросов. Последнее время я занялся такими вещами, как молекула и информация. Переработка информации молекулой. Сегодня как раз и хотелось об этом поговорить, потому что это крайне интересный со всех точек зрения во-прос и есть здесь и вопрос общего характера.
Это вопрос о том, почему весь живой мир, начиная от самых простейших организмов, создан из молекул, а неживой мир – это в основном кристаллы. Жи-вой мир отличается целым рядом качеств, это на рисунке показано. Господь Бог находился в трудном выборе – из чего ему создавать мир, и он почему-то предпо-чел молекулы. Сегодня я как раз хотел поговорить о некоторых своих мыслях в этом отношении. Это мои мысли, я их не навязываю никому, так что многие мои слушатели могут быть не согласны со мной.
Почему именно молекулярный мир, чем он выгоднее, скажем так, по сравнению с кристаллическим миром? Прежде всего, скажу вот о чем. Мои коллеги по институту – геохимики и геологи – привыкли мыслить категориями сотнями тысяч и миллионов лет, и поэтому для них неживая природа тоже изменчива. Я привык, как и большинство из нас, все мерить гораздо меньшим временем, поэтому можно сказать, что окружающий нас кристаллический мир можно рассматривать как неизменный мир – в пределах сравнительно короткого времени.

А.Г. В пределах жизни экспериментатора.

Л.Г. Да. А жизнь не может быть неизменной, и основные черты живого ор-ганизма – это прежде всего то, что живой организм всегда существует как так на-зываемая "открытая система". Вот на следующем рисунке показана открытая сис-тема. Это приемно-преобразующая система – в том числе любой из нас потребля-ет энергию и информацию из внешней среды и обязательно что-то во внешнюю среду выделяет. Не бывает так, чтобы движение было только в одном направле-нии, и поэтому всегда есть контакт с внешней средой. И этот контакт – характер-нейшая черта для живого мира, без такого контакта жизнь просто не существует. Это один из моментов, которые мы должны учесть в нашем последующем разго-воре.
Второй момент заключается в том, что информация, с которой имеет дело живой мир, она, как правило, нечетка, более того, ее часто невозможно формализовать. Мы с этой нечеткой информацией постоянно имеем дело, мы пользуемся многими терминами. Вот тут изображены прелестные дамы, все они красивы, но давайте поставим вопрос так: можно ли, чтобы компьютер выделил из всей этой совокупности по какому-то признаку самую красивую? Хотя мы все это понимаем и любой из нас, взглянув на портрет или на живую прелестную даму, всегда вам скажет, да, вот это красивая женщина. Но сам этот термин, он очень нечеток, определить его четко нельзя. Характерная сторона жизни – это то, что жизнь возможна только тогда, когда это приемно-преобразующее устройство способно работать в условиях нечеткой информации.
Следующий рисунок. Тут нарочно дан размытый сигнал, то, что носит по-нятие нечеткой информации. Больше того, это используется в компьютерах, когда вы задаете какой-то признак не как четко ограниченный, а в виде размазанного с помощью какой-то функции. И весь вопрос в том, что отклик на этот нечеткий сигнал должен быть четким, с четко ограниченными границами. Если воспринимается только какой-то четкий сигнал, то жизнь тоже вряд ли может существовать. Возьмем любое животное, например хищника. Он питается другими суще-ствами, скажем, лиса может поймать зайца и съесть его и прожить, но если зайца нет, она будет мышей ловить, мы это знаем.

А.Г. Если нет мышей, будет кур воровать.

Л.Г. Да, да, будет кур воровать или что-то еще делать. Теперь представьте себе, что это живое существо настроено на то, что должен быть обязательно заяц, да еще какой-то определенной величины, это почти наверняка приведет к тому, что это животное погибнет. Потому что разнообразие – это тоже характернейшая черта, которая тоже обеспечивает сам факт существования жизни: прием нечеткой информации и превращение в совершенно четкую. Потому что, кого бы хищник не съел, все равно это пойдет на функционирование живого организма. То есть если это растущий организм это будет использовано для построения новых тка-ней, клеток, для пополнения их элементами. Конечно, вы понимаете, что тут очень сложная вещь, но достаточно четкая. Хотя прием оказывается очень разма-занным и очень нечетким – это еще одна характерная сторона живой природы, без которой она просто не может существовать. Теперь следующий рисунок. Тут показано растение и пример такого рода – рост растений. Мы все хорошо знаем, что здесь работает фотосинтетический про-цесс. Этот фотосинтез идет вне зависимости того, какое освещение. Может быть утреннее освещение, может быть дневное, вечернее, пасмурная погода, и так да-лее, все это предсказать заранее нельзя, может, тучка какая-то набежит. Значит, организм должен как-то воспринять самый разнообразный спектр, а отреагиро-вать по-прежнему одним и тем же образом. Другое дело, что процесс может идти быстрее или медленнее.

А.Г. С большей или меньшей эффективностью?

Л.Г. Да. С большей или меньшей эффективностью, но он обязательно должен идти и идти вполне определенным образом. То есть, если растение растет, значит, там появляются какие-то новые ткани, новая часть ствола. Если растение выделяет что-то в виде кислорода, оно должно выделять этот кислород опять же вне зависимости от того, происходит это утром, вечером или когда пасмурная по-года.
Невольно возникает такой вопрос: когда, в какой момент и на уровне какой природы будут появляться эти особенности?

А.Г. Каков механизм принятия решения?

Л.Г. Механизм – это несколько более сложная вещь. Давайте пока зададим себе вопрос: когда? Эти признаки проявляются уже в таком сложном образовании как клетка – это уже сложная вещь. Мы прекрасно знаем, что клетка имеет некую оболочку, ядро, клеточную жидкость, все прочие вещи, и там очень сложные про-цессы. Только здесь это начинается или, может быть, это начинается раньше? Хо-тя это еще не жизнь, но уже какие-то признаки, которые необходимы для сущест-вования этой жизни. Вот к этому мы сейчас с вами и подойдем. И попробуем пе-рекинуть мост к тому, что сейчас иногда называют "молекулярной информати-кой".
Давайте поставим себе вопрос – какими признаками, схожими с этими, обладает молекулярный мир? Следующий рисунок. Там показаны две молекулы, обе имеют одну и ту же формулу С6Н6. Здесь обычно сразу вспоминают бензол, но не очень строгая формальная теория предсказывает, что кроме привычного бензола, может быть еще 217 структур, которые все имеют форму С6Н6. В свое время, когда этот результат был получен, он был даже вынесен на первую страницу международного журнала. На самом деле это множество получилось в данном случае из-за того, что правила, которые были сформулированы, были довольно общи и на самом деле 217 структур вряд ли существуют, но я думаю, что 30-40 существуют наверняка. Никто этого специально не изучал, но когда смотришь на формулы, то видно, что приблизительно будет такое количество.
И это в случае такой простенькой системы как С6Н6. Если вы возьмете ка-кую-то сложную молекулу, скажем, 30-40 – 100 атомов, то, как я вначале сказал, это могут быть миллионы структур – разнообразие гигантское. То есть одно и то же сочетание атомов может находиться в колоссальном разнообразии форм. По-скольку такого рода перестройки происходят в замкнутом пространстве, можно сказать, что это одна и та же молекула, которая только принимает различные формы.

А.Г. А свойства у всех одинаковые?

Л.Г. Свойства, конечно, у всех разные, в этом весь и фокус. Свойства у всех разные, но химики говорят (и правильно, может быть, делают), что это разные молекулы. Потому что как обычно определяется, что такое молекула? Это есть мельчайшая частица вещества, которая обладает вполне определенными химическими свойствами. В этом смысле бензол и вторая структура, которая призман называется, – они разные, они с трудом переходят одна в другую, ведут себя сплошь и рядом как отдельные молекулы, но это не значит, что они совсем независимы. В том-то и дело, что существует вполне определенная возможность перехода одной структуры в другую. Для этого нужно какое-то внешнее воздействие – это вопрос другого рода, но такая возможность существует. И возникает невольно такой вопрос – а зачем это гигантское разнообразие? Если учесть такую возможность, то перед глазами возникает совершенно бесконечный мир.
Сейчас в литературе описано приблизительно 20 миллионов молекул, но никто не знает, сколько их на самом деле. И это неизомерные структуры. Если каждой из этих молекул приписать еще сотню-другую изомеров, то у вас вообще возникает нечто совершенно гигантское. И невольно возникает такой вопрос: а зачем? Я буду пользоваться таким выражением: зачем Господь Бог это создал? Я не утверждаю, что именно он, это уже вопрос веры, но я говорю: зачем? Зачем в природе предусматривается такое гигантское разнообразие?
И один из возможных ответов как раз заключается в том, что благодаря этой возможности структурной изомеризации внутри молекулы может передаваться некоторый сигнал. Хорошо известно, что когда молекула крупная, то какие-то реакции совершаются в так называемых реакционных центрах (это то, что носит название близкодействия). То есть получается, что только какая-то часть молекулы принимает участие в реакции. Вся молекула при этом не принимает непосредственного участия в этой реакции. Маленькая молекула вся сразу начнет играть, а крупная молекула в какой-то части сыграет, а остальная часть остается более или менее неизменной.
Возникает вопрос такого рода – а что дальше? То есть может ли случиться так, что полученный в каком-то одном месте сигнал... А сигнал всегда будет, все-гда будет либо поглощение света (то, что носит название хромофорной группи-ровки), либо реакция присоединения, когда какая-то энергия обязательно будет передана в систему – дальше она может быть израсходована на тепло, на столкно-вение, произойдет простое присоединение, и на этом все закончится. Но все мо-жет быть и не так.
Мы сейчас немножко об этом и поговорим. Что может быть в молекуле? Рассматривается такой простой пример, как прием и запись оптической информа-ции. Это тоже одно из очень важных свойств молекул. Это в школе сейчас прохо-дят, наверное, все знают, что квантовая система имеет уровни энергии, и, когда происходит облучение этой квантовой системы электромагнитным излучением, энергия поглощается, и вы можете перейти с нижнего уровня на верхний. На ри-сунке это изображено красной линией. А дальше процесс идет вниз, потому что молекула не может долго находится в возбужденном состоянии.
Но этот процесс может пойти по двум путям. Первый: мы сразу возвраща-емся в самое нижнее состояние, и тогда это достаточно бесполезная вещь, то есть поглотили, излучили, и ничего не произошло.
А может быть другой путь. Вы попадаете на уровень энергии, который яв-ляется резонирующим с уровнем энергии другого изомера, и тогда у вас происхо-дит переход в другой изомер, то, что часто называют безизлучательным перехо-дом, и после этого происходит высвечивание. У нас появился второй изомер. По-явление этого второго изомера возможно только тогда, когда произошло первич-ное поглощение, иначе он не появится. Значит, происходит следующее – вы как бы записали информацию, у вас остался след от действия исходного сигнала. Это тоже очень важное свойство молекулярных систем – они могут записать инфор-мацию.
Причем эта информация может храниться очень долго, и это, в конечном счете, может привести к тому, что возникает своеобразная память молекул о некотором внешнем воздействии. Это крайне важная вещь. Я потом немножко об этом скажу – для живого организма, особенно более-менее сложного, характерно наличие памяти, характерно наличие обучения, и результат этого обучения может храниться очень долго. Например, если мы видели какого-то человека, мы запоминаем его образ, и он может годами у нас храниться. При этом нужно, чтобы это сохранение происходило без особенного напряжения, то есть без специальной энергетической подпитки. Здесь так и произойдет – происходит переход в другой изомер, и он существует очень долго, он запомнил эту информацию и потом результат этого воспоминания существует очень долго. Никакого последующего действия не нужно – вы можете обнаружить, что такой эффект произошел.
Дальше еще один момент. Мы знаем хорошо, что существует такой химический эффект, который носит название миграция связи. Вот здесь на рисунке показано, что двойная связь находится в крайнем левом положении, то есть близко к радикалу R, а дальше идут одиночные связи. Но эта двойная связь может переместиться и принять другое положение. В принципе, она может переместиться и дальше, и происходит как бы перенос сигнала вдоль по определенном цепи, то есть молекулярные цепи могут передать информацию от одного участка молекулы к другому участку молекулы.
Обратите внимание на то, что мы опять начинаем касаться процессов жиз-ни, где мы все время имеем вопрос передачи информации и восприятия информа-ции.
Этот процесс можно мыслить себе таким образом, как показано на сле-дующем рисунке. Тут изображено то, что в науке носит название потенциальной ямы, она внизу, то есть молекула находится в основном состоянии. Затем проис-ходит какое-то возбуждение, вы попадаете в верхнюю потенциальную яму, и уро-вень энергии этой ямы может резонансным образом взаимодействовать с уровнем энергии другого изомера, другой изомер – это другая яма. И дальше начинается процесс перекачки из одного изомера в другой. Это то, что явно проявляется, ко-гда двойная связь мигрирует вдоль одиночных связей, потому что каждое поло-жение этой двойной связи – это другой структурный изомер.
Оказывается, что если в конце такого процесса мы попадаем в глубокую яму (часто это какая-то реакция), то тогда вернуться к исходному состоянию очень трудно, и тогда весь процесс движения этой двойной связи в данном случае должен происходить все время в определенном направлении, то есть у вас полу-чается направленная передача сигнала. Обратите внимание, что это направленная передача сигнала существенным образом отличается от того, с которым мы имеем дело в кристаллическом компьютере – там сигналы переносятся с помощью элек-трического тока. То есть с помощью какого-то электрического воздействия. Здесь совершенно другая природа, но результат тот же самый.
Если рассмотреть так называемый фотосинтетический центр, то он устроен так. Там крупные плоские молекулы являются приемником излучения, вроде па-раболического зеркала, которое может концентрировать это излучение. Когда они принимают излучение, то с ними ничего собственно не происходит, реакция идет в совершенно другом месте. И нужно передать туда какой-то сигнал, какую-то энергию. По-видимому, это и происходит за счет такой последовательной изоме-ризации. Другое дело, что это может быть гораздо сложнее, чем здесь изображе-но, но...

А.Г. Но принцип тот же.

Л.Г. Но принцип, по-видимому, тот же. Я думаю так, может быть, другие думают иначе...

А.Г. Недавно у нас была передача, где мы говорили о фотосинтетике, об основных ее элементах. Очень похоже, что вы не один так думаете.

Л.Г. Значит, по-видимому, такие вещи все же наблюдаются. Эта крупная молекулярная система оказывается способной принять сигнал в одном месте, а передать его в совершенно другое место, и там, может быть, произойдет какая-то нужная реакция или будет записан какой-то сигнал.
Все это приводит к очень важному рассуждению. Известно, что одна моле-кула может опознавать другую молекулу, это в биологических системах типичная вещь. То есть когда две молекулы сближаются, первый этап здесь тот, что они по-хожи по форме (это то, что носит название "ключик-замочек", принцип Фишера), когда молекула укладывается около другой. На втором этапе происходят отдель-ные химические реакции и получается, что сигнал подан в несколько центров приемной молекулы.
Теперь зададим себе такой вопрос: что такое распознавание образа? Под распознаванием образа в математике понимается следующая вещь – у вас есть ка-кой-то образ, который в идеале записывается цифрами. Это не всегда так, но близко к этому. Скажем, какой-то спектр можно записать в виде положений ли-ний, их интенсивности и так далее, получить многомерный сигнал. Такой много-мерный образ можно изобразить в виде точки в многомерном пространстве. То есть, у вас много признаков сводится к одному.
В математической логике то же самое: скажем, много исходных каких-то положений могут потом привести к одному выводу, так что когда наблюдается этот сигнал, это доказывает, что вся исходная гамма присутствует. Здесь имеется довольно четкая аналогия.
Оказывается, что молекулы могут решать такие задачи, то есть может по-лучиться так, что происходит несколько химических реакций, затем эти результа-ты приводят к определенным изомерным перестройкам и в конце концов образу-ется такая изомерная структура, которая возникает только тогда, когда, скажем, в четырех местах произошел вполне определенный набор химических реакций. Вот это – типичный случай распознавания образа. И мы видим, что молекулы дейст-вительно способны решать подобные логические задачи. Обратите внимание, что это уже очень сложные логические задачи, решать которые не так уж просто нау-чить кристаллический компьютер.
Что еще важно? Что молекула может получить исходную информацию не так, чтобы одновременно пришел сигнал от всех четырех реакций, а они могут в разное время проходить, и больше того – в разном порядке.

А.Г. Но приведут к тому же результату?

Л.Г. Приведут к тому же результату. Это крайне важно. Видите, как это похоже на то, что делается в живом мире.
Больше того, последовательность таких операций приводит к тому, что молекулы способны решать логические задачи. Я потом к этому перейду, а сейчас я увидел картинку, где показан такой молекулярный приемно-решающий элемент, который напоминает жизненный процесс. Мы уже показывали систему потенци-альных ям. Там слева изображен приемный элемент, который принимает внешний сигнал, затем этот внешний сигнал передается в реакционный центр, в реакцион-ном центре произошла реакция, продукты этой реакции выведены наружу, и если бы здесь все закончилось, то элемент сработал бы всего один раз. Но если у вас имеется связь с внешней средой, и вы можете произвести такую реакцию, чтобы восстановить свойство этого элемента, то у вас...

А.Г. Он становится постоянно действующим...

Л.Г. Он будет все время действовать. По-моему, уже есть такого типа экс-перименты, в которых построены системы, напоминающие фотосинтетические. То есть, они под действием света все время что-то делают. Обратите внимание, что это опять открытая среда, то есть молекула срабатывает как система, опять очень напоминающая работу живого организма в условиях, в которых он только и может существовать, в условиях открытой среды. Потому что закрытая среда приводит к однократному процессу. Он может быть полезен, так можно записать какую-то информацию, сделать диск какой-то, на котором вы что-то записали, но это однократный процесс. А вот если все время подпитывать извне, то это может быть непрерывный процесс, напоминающий живой.
На следующей картинке показано, как первый изомер переходит во второй, второй поглощает свет, переходит в какой-то третий. Видно, что третий изомер появится только тогда, когда было поглощение света ?1 и ?2. Такой процесс, когда какой-то результат появляется только тогда, когда есть воздействие номер 1 и воздействие номер 2 – одинаковые оба – это есть то, что носит название логического умножения, то есть молекула решает логическую задачу.
Видите, как много свойств, напоминающих действие живого организма, фактически, заложено в способности молекул преобразовываться под действием внешнего сигнала. В интерпретации этих свойств, мне кажется, я уже могу разой-тись с другими авторами. Сейчас очень много делается работ, связанных с нося-щейся в воздухе идеей молекулярного компьютера. И большинство работ связаны с тем, что пытаются построить молекулярный компьютер по аналогии с кристал-лическим, то есть тоже работающим по принципу "ноль – единица". Там надеют-ся на что, что это будет меньшего размера, и так далее. Но мне кажется, что не стоит это делать, а стоит использовать те свойства молекулы, о которых мы сей-час говорили. Те свойства молекулы, которые связаны с тем, что она, как слож-ный приемник, способна решать сложные логические задачи, вплоть до распозна-вания образа. Я думаю, что такой компьютер может оказаться медленнее, чем кристаллический, но он может оказаться гораздо выгоднее для решения многих сложных логических задач.
А теперь давайте опять вернемся к живому организму. Скажем, к человеку. Мы с вами, по-видимому, очень плохо вычисляем.

А.Г. Хуже компьютера, очевидно, да.

Л.Г. Не просто хуже. Я буду говорить про себя, про вас я не буду говорить, вполне реально, что вы это все умеете делать, но если трехзначное число умно-жить на трехзначное, я могу это сделать на бумажке, а в уме не могу.

А.Г. Я тоже.

Л.Г. Вы, скорее всего, тоже. Но возьмите любого дикаря – у него есть только десять пальцев, но он различит след животного, куда оно пошло, ответит вам на вопрос самец это или самка, вес определит и многое другое. А ведь следы – следы все разные, он работает в условиях нечеткой информации и решает очень сложную задачу распознавания. Я однажды прочитал слова, которые мне очень понравилась, и я их очень часто цитирую: любой ребенок на расстоянии 10 мет-ров легко отличит кошку от собаки, но попробуйте научить это сделать компью-тер... Во всяком случае, сейчас пока нет таких устройств, и думаю, что вряд ли появятся, тем более если ставить задачу распознавания в любом ракурсе и тому подобное.
Мне кажется, что здесь есть какой-то момент, связанный с молекулярным миром, потому что молекулы, может быть, гораздо лучше будут приспособлены для создания компьютеров, решающих логические задачи – причем, в условиях нечеткой информации – чем кристаллический компьютер.
Возьмем воздействие света на молекулу. Спектральный состав может быть очень разный, сильно различающийся по интенсивности, пусть даже будут одина-ковые длины волн, но очень сильно различающиеся по интенсивности. Можно показать, что такое устройство будет давать один и тот же ответ (типа распозна-вания некоего образа) в условиях гигантского изменения интенсивности отдель-ных спектральных полос.

А.Г. То есть, мы имеем нечеткую информацию на входе и...

Л.Г. Да. Причем заранее можно не задавать этой информации, вы можете действовать разнообразным образом, результат будет один и тот же. Время, кото-рое будет потребно на создание этого сигнала, окажется разным, но результат бу-дет один и тот же.
Если вы возьмете кристаллический компьютер и начнете менять напряжение от 220 до 100 вольт – думаю, он просто работать не будет. А вот молекулярное устройство работать будет.
Мне кажется, повторяю, это мое мнение, что интерес к молекулярному ми-ру и построению молекулярных компьютеров должен быть направлен именно на это. То есть на попытки реализовать те специфические возможности, которые, в принципе, заключены в молекулярных системах. Я уже не говорю о том, что можно построить не только двоичный код, но и более серьезный, потому что вы можете в одном и том же месте, переводя молекулу из одного изомера в другой, записать ноль, один, два, три – можно и больше сделать.
Конечно, сейчас не совсем ясно, во-первых, как это сделать технически. На простых примерах это понятно, но как это сделать технически? Как извлекать эту информацию, что должно быть действующим фактором? Может быть, свет?

А.Г. Напрашивается свет, да.

Л.Г. Напрашивается свет, да. Но как создать конкретный чип, когда у вас будет много молекул и когда будет много мест, где будет излучаться и погло-щаться энергия – сегодня я не берусь обсуждать этот вопрос, я не знаю. Но те ра-боты, которые мы ведем и я веду, они связаны с тем, что мы пытаемся как-то по-нять, как молекулярные системы могут срабатывать как действительно очень сложные логические элементы и каким образом можно построить какую-то слож-ную систему, опираясь на отдельные свойства отдельных частей в сложной моле-куле.
Сейчас очень большой интерес проявляется именно к сложным молекулам. Есть целая область химии, которая носит название супрамолекулярная химия, где изучаются как раз сложные системы, связанные, например, эквивалентными водородными связями – сложные вещи. В свое время за создание основ такой химии была выдана Нобелевская премия. Сейчас все больше и больше интереса проявляется к этим молекулярным системам. Думаю, что они могут служить и хорошей основой, во всяком случае, для изучения и, может быть, создания специфических устройств, которые рассчитаны на такую работу.
Иногда пользуются термином "молекулярная машина", сейчас появился такой термин. Это может быть и компьютерное устройство, это может быть хи-мическое устройство, то есть воспринимающее световую информации и выдаю-щее результат в виде другой молекулы, в виде реакции. Это тоже крайне интерес-но, потому что компьютер может воспринять и выдать только электрическую ин-формацию.

А.Г. Я подумал о том, что, может быть, инженерные решения будут заключаться в том, чтобы не отказываться от существующих кристаллических компьютеров, а попытаться сделать гибрид?

Л.Г. Может быть, гибрид, а, может быть, совсем другие устройства. Я как раз считаю, что кристаллические компьютеры и их развитие безусловно полезно. Но в целом ряде случаев они работать не будут, но они будут именно хорошо считать.

А.Г. Почему я и говорю о гибридизации, скорость реакции молекулы все-таки уступает быстродействию кристаллических машин. Поэтому, если бы можно было сделать так, что какая-то часть функций ложится на обычную вычислитель-ную машину, а там, где она не способна справиться с задачей, где используются неполные, недостаточные данные, включается вот этот модуль.

Л.Г. Вполне реальная вещь. Я просто хотел сказать, что, насколько я знаю эту область (хотя, конечно, я не могу знать все), сейчас к этому проявляется очень большой интерес. Здесь очень много идей носится в воздухе, их пытаются реализовать теми или другими способами, либо подражая кристаллическому компьютеру, либо думают о том, чтобы создать нечто принципиально новое. Это передовой фронт науки...


Вверх