Доказательность в математике – 16.06.03(хр.00:39:45)

Участник:
Ершов Юрий Леонидович – доктор физико-математических наук, академик РАН

Александр Гордон: ...естественная наука и пошевельнуться не может. В физике если нет математического аппарата, начинают махать руками и говорить, что это философия или метафизика. И вдруг оказывается, что внутри математики есть проблема с доказательностью, или с определениями, или с языком. Можно рассказать, в чем дело-то?

Юрий Ершов: Дело в том, что доказательность, она в существе самой математики сидит. И поэтому, как и всякая наука, как и всякая технология, математика совершенствует свое основное средство, и поэтому я не могу сказать, что просто есть проблема с доказательностью в математике, а есть другая проблема. Математика как бы объявила себя эталоном доказательности, эталоном образца, эталоном точности и раз уж объявила, то надо этому и следовать. Поэтому вопрос состоит в следующем: то, что считалось доказанным в 17-м веке, то не принималось учеными 18-го века и так далее. Но на рубеже 19 и 20 века произошел некоторый кардинальный переворот.
Дело в том, что математики привыкли работать с совершенно точно определенными понятиями, хотя понятие точности тоже все время меняется и уточняется. Так вот, доказательность лежит в существе этой науки. А что такое доказательство как математическое понятие?
Первые точные определения этому понятию были даны только на рубеже 19-20 века в связи с созданием математической логики. Дело в том, что логика в свое время возникла как прикладной раздел ораторского искусства, риторики. Когда говорят о логике Аристотеля, то надо, конечно, понимать – это была не совсем та логика, которой пользуются математики. Математики в своей деятельности, в финальной деятельности, когда они на суд сообщества своего и более широкой аудитории выносят доказательство теорем, то они, безусловно, пользуются логикой и стремятся к тому, чтобы доказательства были точными, понятными, доступными. Так вот, в каждой науке есть периоды – период накопления фактов и период критический, когда нужно посмотреть, как говорится, все ли в порядке, и посмотреть на основы, привести здание, которое строится, в более-менее надлежащий порядок, математика не представляет собой исключение из этого. Один из таких периодов перехода от накопления фактов к упорядочению был в конце 19-20 века, когда была сделана попытка вполне развитый математический анализ, алгебру, перевести на более строгую основу.
Тогда появилось понятие "множество", очень такое абстрактное понятие, введение которого в школу привело к достаточно серьезным отрицательным последствиям. Но для математики это было очень важно. Понятие множества оказалось тем единым понятием, в терминах которого можно было все остальные математические понятия сформулировать. И строилось то, что потом Пуанкаре назвал раем для математики, – "теория множеств". И за проникновение в рай, оказалось, нужно платить. Оказалось, что в тех, казалось бы, совсем новых основаниях построения математики как единого стройного здания обнаружились противоречия. И это был кризис в основаниях математики. Все серьезные математики того времени: Анри Пуанкаре, Давид Гильберт, Герман Вейль и другие, были озабочены тем, чтобы как-то преодолеть эти противоречия.
И в качестве противоядия, в качестве одного из средств, обеспечивающих беспроблемное развитие математики, явилось создание математической логики, которая позволила впервые дать точные математические определения, а следовательно, и сделать объектом исследования такие понятия, которые в математике использовались, но использовались не как математические понятия, а именно: доказательство и алгоритм. Я не буду про другие говорить, но эти понятия сами по себе весьма важны.
В 1900-м году на Международном математическом конгрессе в Париже Давид Гильберт, знаменитый немецкий математик, я его уже называл, выступил со списком проблем, которые, как он считал, в 20-м веке в математике будут одними из самых важных. И нужно сказать, что формулировка этих проблем сыграла очень важную роль для развития математики. В частности, человек, который решил одну из проблем Гильберта, сразу получал всемирную известность – так что это был некий критерий. Но в заключение сам Гильберт сформулировал оптимистическое утверждение, что все вопросы, которые математики могут задать, обязательно на них можно получить ответ. Но что это значило, это вопрос довольно сложный.
В частности, можно доказать, решить проблему, то есть привести доказательство, что эта проблема имеет положительное решение или отрицательное решение. Но можно задать и более хитрый вопрос. А может быть, нет доказательства ни того, ни другого? Но для того чтобы математически ответить на такой вопрос, нужно знать, что такое доказательство. И когда математическая логика предложила точное определение этому понятию, то получились результаты, которые до сих пор будоражат умы человеческие, а именно, что можно доказать, что нет доказательства того или иного утверждения. Многие люди слышали о теореме Геделя о неполноте, многие философы рассуждают на эту тему, ну и люди, иногда далекие от математики и философии, что-то об этом слышали, и много бывает интерпретаций, я тут не хочу анализировать все точки зрения, какие могут быть...
Существует парадоксальное утверждение в теореме Геделя, утверждение о том, что нечто нельзя доказать. Но я бы, может быть, сделал некоторый короткий экскурс в историю: интерес к формулировке доказательства имеет не только парадоксально-философский, но и чисто позитивный смысл. Я уже говорил, что математика стремится ко все более точному изложению своего собственного предмета, и одно из достижений еще древних греков было создание аксиоматического метода. Суть изложения геометрии по Евклиду (оно было отражено и в учебниках Киселева) состоит в том, что геометрические истины начинаются с формулировок аксиом, а все остальные утверждения, леммы, теоремы, они вытекают из аксиом. Это было на самом деле интеллектуальным открытием.
Я должен сказать, что появление аксиоматического метода произвело сильное впечатление на другие науки. И философы, биологи, физики, тоже попытались изложить так свои системы. Вот Спиноза свои сочинения излагал в виде такого аксиоматического, систематического изложения. Но как показало дальнейшее развитие, там было два ну не то что бы изъяна, а две вещи, которые надлежало более серьезно проанализировать и уточнить. Одно из них состояло в следующем. Вот есть аксиомы, все остальные истины должны получаться из них или доказываться из этих аксиом. А что такое доказательство? Если оно точно не сформулировано, то здесь остается элемент неопределенности. Как говорится, по согласию внутри математического сообщества кое-какие тексты принимались за доказательства, а другие не принимались. То есть математики осознавали, что такое доказательство, хотя иногда возникали и споры, но, тем не менее, этот элемент требовал уточнения.
И вот точная формулировка доказательства составляла, так сказать, следующий уровень точности для аксиоматического метода. И вторая вещь – это язык. Дело в том, что обыденный язык, он не просто двусмыслен, он многосмыслен. Я обычно на лекциях привожу в пример слово "радикал". Есть радикальные партии, есть свободные радикалы в химии и есть, как говорится, радикалы – корень квадратный, который в школе учат. Но если говорить о контекстах, то там многозначность языка становится бесконечной. Но без этого поэзия была бы невозможна, если бы язык, на котором мы разговаривали, имел только один смысл. Но для математики, для науки, стремящейся к точности, это достоинство естественного языка является недостатком. Поэтому другая вещь, которая была нужна, – это создание достаточно богатых формальных языков.
Дело в том, что математика довольно давно начала вводить элементы формального языка – различные обозначения, переменные, знаки для операций, знаки для того же радикала, и так далее. И многие имеют впечатления о математике как о формулах, вот формулы – это элементы формального языка. Но тем не менее, если вы посмотрите даже современные математические журналы, то кроме формул там еще и довольно большой текст. И математическая логика предложила такие формальные языки, которые включают не только оперативные элементы математики, но и все содержание математическое может быть изложено на формальном языке. Этим достигался еще один уровень точности, что поимело, между прочим, любопытные последствия.
Сейчас говорить о влиянии компьютеров на нашу жизнь, это общее место. Понятно, что они завоевывают все большее и большее место в нашей жизни. Но если посмотреть, какие люди были у истоков создания первых компьютеров, то мы там увидим Норберта Винера, Алана Тьюринга, еще ряд людей, я потом, может быть, их назову. Эти люди были математиками, которые начинали свою профессиональную деятельность в области математической логики. Норберт Винер был студентом Бертрана Рассела, известного английского философа, но он был и одним из создателей первых формальных систем. Алан Тьюринг тоже был профессиональный логик. И я думаю, что это осознание, что формальные языки могут быть столь же богаты по выразительным возможностям, как и естественный язык, но точными, с точным и однозначным смыслом, – это позволило им предвидеть, что компьютер – это не есть просто большой арифмометр, а что он может стать, как говорится, интеллектуальным орудием. Так что опыт работы людей в математической логике привел и к таким, я бы сказал, "сайд-эффектам", как создание компьютеров.
Ну а с точки зрения внутреннего развития, то я уже сказал, что можно считать, что математическая логика на две ступеньки подняла точность математического языка по сравнению с классическим аксиоматическим методом. Но история продолжается. И обнаружились и другие любопытные вещи. Мой учитель, академик Анатолий Иванович Мальцев сделал, на мой взгляд, два очень глубоких открытия, о которых я попытаюсь рассказать, но не в деталях, поскольку это довольно сложно.
Сначала хочу объяснить то удивление, которое, в частности, я испытал (используя некоторый образ, который может быть не совсем корректен в таких научных беседах, но по-другому я не сумею, видимо, объяснить то удивление, а может быть восхищение, которое лично я испытал). Представьте, что какая-то фирма вынуждена создать себе охрану. И вдруг оказывается, что созданная охрана является весьма мощным производителем, то есть дает удивительный эффект для основной производственной деятельности.
Ну а теперь вернемся к математике. Так вот, я уже объяснил, что математическая логика была создана как некоторое охранное предприятие. Охрана от противоречий. Как для нынешних фирм система охраны необходима, так и математика нуждалась в определенном охранении. Но казалось бы, ну что тут такого? Но вот оказалось, что языки, в частности один из языков математической логики, так называемое "исчисление предикатов первой ступени", обладает некоторым мощным внутренним математическим свойством. Анатолий Иванович Мальцев в 36 году доказал так называемую Теорему компактности. Не буду говорить, что это такое, но это, так сказать, мощное внутреннее свойство формального языка. А в 41 году Анатолий Иванович продемонстрировал, что только с помощью этого свойства языка можно доказать очень многие теоремы, которые уже в специализированных отделах математики доказывались – так называемые локальные теоремы, причем, разные теоремы разными способами. Они чем-то были похожи, но кроме ощущения того, что они похожи, ничего другого не было.
Оказалось, что большинство из этих локальных теорем – это есть следствие этой локальной теоремы. Что достаточно сформулировать на этом формальном языке соответствующее утверждение с некоторыми ограничениями, и тогда уже как следствие получается эта локальная теорема. Вот здесь я хотел бы сослаться на книгу Пойя – это известный американский ученый, но на самом деле он из Венгрии происходит. Пойя написал книгу, которая у нас была переведена, "Как решать задачу?", она была издана в "Учпедгизе". И там, собственно, рассказывается некоторая эвристика и даются некоторые советы, как решать задачу, как анализировать и так далее. И там, в частности, описываются разные явления, которые при этом возникают. И одно из явлений называется "парадокс изобретателя". Там особенно про изобретателя не идет речи, но суть состоит в следующем: иногда, решая задачу, полезно взглянуть на нее, может быть, сверху и рассмотреть более общую задачу. И при таком взгляде она становится проще. Я считаю, что открытие локальной теоремы и открытие способа ее применения для доказательства серьезных теорем, которые уже были известны и очень многих новых теорем, это был парадокс изобретателя.
Оказалось, что суть большинства этих локальных теорем – это свойство того формального языка, который используется. Ну, дальше – больше. Теорема компактности привела к созданию одного из наиболее развитых разделов математической логики – так называемой "теории моделей". И здесь прослеживается, на мой взгляд, довольно любопытная эволюция, которую я попытаюсь как-то объяснить. Я для себя использую деление "современная математика" и "классическая математика", достаточно понятное различие. Можно про любую науку сказать – современная и классическая. Но на самом деле, что такое классическая математика и что такое современная? Классическая математика занималась очень ограниченным числом объектов – линия, плоскость, фигуры на плоскости, трехмерное пространство, далее непрерывные функции в трехмерном пространстве. Этим классическая математика занималась многие века.
Современная математика началась, я думаю, с открытия Эвариста Галуа, который для решения классических вопросов о нахождении корней уравнения в радикалах, о которых я уже здесь говорил, предложил ввести некоторые новые вещи. Не те классические объекты, а автоморфизм и конечные группы и так далее. Для решения классических вопросов нужно было ввести новые сущности. И вот с этого, на мой взгляд, начинается современная математика. Но и сейчас изучение классических объектов можно отнести к работам по классической математике. Но необходимо и изучение тех новых конструкций, которые нужны и для внутреннего развития математики, и для решения старых вопросов. Вот знаменитая теорема Ферма, которую несколько столетий пытались решать математики, она была, наконец, решена несколько лет тому назад. Но для ее решения, а она была сформулирована в 17-м веке, понадобились совершенно современные методы. И это потребовало нескольких столетий развития математики. Так что существуют классические вопросы и классическая математика и есть современная математика, когда изучаются уже объекты более общей природы.
Так вот первые применения Локальной теоремы, которые Анатолий Иванович делал, касались современной математики. Они относились к теории групп, к теории алгебраических систем, к таким понятиям, которые характеризуют современную математику. Хрущовский применил методы математической логики для совершенно классического раздела математики – для теории чисел и алгебраической геометрии. Это такие как бы священные коровы, которым молятся. И оказалось, что даже для решения таких серьезных, вернее, классических вопросов, методы теории моделей, математической логики, тоже применимы. А еще один этап, тут я хочу говорить о своих собственных последних работах, связан со следующим. Тут небольшое отступление все-таки требуется.
Развитие всякой науки, в том числе и математики, сопровождается не только постановками задач и их решениями, но и развитием понятийного аппарата, ведением понятий. Причем, ведение правильных понятий на самом деле является очень существенным, и часто введение плодотворного понятия является столь продуктивным, что вызывает взрывную реакцию и проникновение понимания в существо вещей. Так вот, мне удалось применить математическую логику и ее средства для того, чтобы ввести в обиход понятия, которые важны для классических теорий. Итак, Мальцев применил математическую логику для современной математики, Хрущовский для решения вопросов классической математики, а я предложил некоторые понятия для классической математики, в том числе и для теории чисел. То есть один из наиболее таких развитых разделов для теории чисел, а теория чисел – это одна из самых первых математических теорий.
В конце 19 – начале 20 века была доказана так называемая "теория полей классов". Не буду говорить, что это такое, но до решения проблемы Ферма считалось, что это вершина в теории чисел. И те понятия, которые вводились для формулировки этой теории, они обладали определенными недостатками, так скажем. А техника математической логики позволила предложить понятия, которые могут быть использованы вместо тех понятий и, на мой взгляд, более глубоко проникнуть в существо вопроса. Боюсь, что вдаваться в детали здесь все равно сложно. Я просто хотел этот ряд подчеркнуть: логика, начав с того, что продемонстрировала свою мощь в современной математике, потом оказалась применимой и для решения классических вопросов, а сейчас начинает покушаться и на понятийный аппарат классической математики. Так что это одна из линий развития. Есть и другие.
Я уже упомянул о том, что создание математической логики послужило, в частности, важным элементом в развитии компьютеров, и там есть свои формальные языки, языки программирования, и так далее, и так далее. Эта линия тоже сама по себе развивается и весьма успешно, и там возникают очень интересные, в том числе математические вопросы. Так что математическая логика, еще раз говорю, возникнув как некоторый охранительный механизм, неожиданно, на самом деле неожиданно, оказалась весьма и весьма мощным орудием, которое применимо практически во всех разделах математики.
Для слушателей или зрителей нашей программы, может, я чересчур увлекся, уйдя внутрь математики, может быть, полезно вернуться к теореме Геделя о неполноте, о которой я говорил, что она волнует и философов, и, может быть, часть обычных людей. Есть такое представление, что она демонстрирует ограничения человеческого разума, и так далее, и так далее. Если на это взглянуть изнутри математики, то на самом деле там особых тайн нет, это очень похоже на такие парадоксы, уже не относящиеся к математике, как "парадокс лжеца", который демонстрирует следующее. Обычно люди считают, что каждое высказывание можно каким-то правдоподобным образом оценить, является оно истинным или ложным. Конечно, можно накладывать определенные условия и так далее, но можно оценить, вернее, можно придать истинностное значение – истинное или ложное это высказывание. Но еще со времен греков известен "парадокс лжеца". Один критянин говорит: "все критяне – лжецы". Что соответствовало исторической легенде, по крайней мере. Простодушная попытка оценить, истинно это высказывание или нет, показывает, что не все так просто. Если он сказал правду, значит, он критянин и сказал правду. Хорошо, а если он обманул, тогда приходим к другому противоречию.
И теорема Геделя, во всяком случае, ее доказательство, используя определенные находки, довольно любопытные технические находки, в некотором смысле моделирует этот парадокс. У Гильберта, которого я уже упоминал, была уверенность, что можно создать такую систему аксиом для всей математики, из которой будут следовать все математические утверждения. Это такая вера была. И он предложил программу формализации математики. А Гедель, собственно, его опроверг. Он показал, что если аксиоматическая система достаточно богата, то в ней обязательно можно сформулировать утверждение, которое не может быть доказано, но которое будет верным. А в основе этого лежит следующее, что и для этого требуется не весь язык математики, а язык, который говорит просто о натуральных числах, 0, 1, 2, 3, о сложении и умножении. Язык достаточно ограниченный. Но если использовать такой способ, который называется нумерация, то есть если занумеровать все формальные выражения с помощью чисел (а эти утверждения формального языка сами говорят о числах), то можно говорить о самих себя. Проблема самоприменимости кодируется, используя нумерации. То есть сам подход математически был весьма оригинальным, а дальше уже само рассуждение и приведение к противоречию получается достаточно просто.

А.Г. Если позволите, два вопроса, поскольку у нас не так много времени осталось. Первый касается как раз теоремы Ферма. Все ли доказательства равноценны? Потому что ведь Ферма наверняка имел в виду некое другое доказательство собственной теоремы, а не то, которое получил американец, если не ошибаюсь...

Ю.Е. Эндрю Уайлс.

А.Г. ...Эндрю Уайлс 300 лет спустя. И таким образом, можно ли считать теорему Ферма доказанной? Это первый вопрос.

Ю.Е. Безусловно, так, как эта теорема сформулирована, в таком виде Уайлс ее и доказал. Использовал ли он те средства, которые были доступны Ферма? Ответ – безусловно, нет. Я уже об этом говорил, в доказательстве Уайлса используются очень современные средства, причем, которые создавались в течение многих лет. Так что это, безусловно, не то, на что надеялся или о чем заявил Ферма. Известно, что он заявил, что "поля книги слишком малы для того, чтобы я смог воспроизвести то удивительное доказательство, которое я нашел". Но, тем не менее, многовековая экспертная оценка утверждает, что, по-видимому, Ферма все-таки не имел доказательства.

А.Г. И второй вопрос. То, что является священной коровой для одних наук, естественных, скажем, для физики, и что формулируется как принцип Оккама или бритва Оккама – отсекай ненужные сущности – в математике напрочь опровергается, судя по вашим словам. То есть математика создает сущности на каждом шагу и оказывается, что они необходимы для существования самой математики.

Ю.Е. Не совсем так. Дело в том, что идет отбор этих сущностей. Они создаются, они пробуются. Те сущности, которые себя оправдывают, они остаются. А те, которые, как говорится, не подтвердили свою полезность, свою нужность, они просто отпадают. И в этом отношении, кстати, на математику можно смотреть и как на экспериментальную науку. Математики создают орудия, пробуют их, выбрасывают ненужные и оставляют нужные. Но то, что, как говорится, умножать сущности иногда нужно. Это сделали, например, уже упомянутые здесь Галуа и Абель, которые решили известную проблему о том, что корень общего уравнения пятой степени неразрешим в радикалах, то есть нельзя написать формулу теми ограниченными средствами, которые есть. Так вот, для ответа на этот вопрос необходимо было выйти за пределы сущности классической математики. Для этого нужно было ввести новые понятия. Без этих новых понятий ответа бы не было. Так что создание новых сущностей является обязательным. Но тем не менее, во-первых, есть естественный отбор, а, во-вторых, иногда математики позволяют себе декларировать, по крайней мере, абсолютную свободу. В принципе я могу написать некоторую систему аксиом и буду ее исследовать и, как говорится, никто мне не запретит. Это правильно, никто не запретит. Но в реальной жизни, конечно, так не происходит. Потому что, во-первых, математическое сообщество может посмотреть на твои упражнения, но если ты ни одного человека...


Вверх